Tetrahedron Letters No.4, pp. 479-481, 1968. Pergamon Press. Printed in Great Britain.

A NEW SYNTHESIS OF

3-METHOXY-176-CARBOXYOESTRA-1,3,5(10),6,8-PENTAENE

D. K. Banerjee, Narain Mahishi and D. Devaprabhakara Organic Chemistry Department, Indian Institute of Science, Bangalore, India

(Received in UK 19 September 1967)

A SYNTHESIS of 3-methoxy-17 β -carboxyoestra-1,3,5(10),6,8-pentaene (I, R=2H) was described (1) earlier by Banerjee and Johnson and coworkers. The recent publication (2) of Harnik <u>et al</u>. on the applications of 2-methyl-3-carboxycyclopentanone-2-acetic acid (II) derivatives in steroid synthesis has prompted us to report the present new synthesis of I, (R=2H), using ethyl <u>trans-2-methyl-3-carbethoxycyclopentanone-2-acetate</u> (IIa, R=C₂H₅) as the starting material; the isomeric <u>trans-</u> and <u>cis-keto</u> diacids (IIa and IIb, R=H) and the anhydride (III) were reported (3) for the first time by Banerjee and Das Gupta in 1952 as useful synthetic steroid intermediates.

2-Methoxy-6-lithionaphthalene was condensed with the keto diester (IIa, $R=C_{2}H_{5}$) following the procedure (4) of Newman <u>et al</u>. Treatment of the resulting crude product with p-toluenesulphonic acid in benzene followed by saponification afforded the unsaturated diacid (IV, R=H), m.p. 201-203°; IR) ^{nujol} 2600 cm⁻¹, 1704 cm⁻¹, 1631-1634 cm⁻¹, 1600 cm⁻¹, 1250 cm⁻¹, 830 cm⁻¹. Cyclisation of IV, R=H, and the corresponding dimethyl ester (IV, $R=CH_{3}$), ^{m.p.} 109-110°; UV λ_{max}^{EtOH} 235 m^µ (log \in 4.1), 285 m^µ (log \in 3.6), 320 m^µ (log \in 2.9), 329 m^µ (log \in 2.9); IR) ^{nujol} _{max} 1745 cm⁻¹, 1645 cm⁻¹, 1613 cm⁻¹, 1258 cm⁻¹, 814 cm⁻¹, with polyphosphoric acid gave the unsaturated

Melting points are not corrected.

keto acid (V, R=H), m.p. 256-258° (evacuated sealed tube); UV λ 238 m4 max

 $(\log \in 4.4), 273 \text{ m}^{4} (\log \in 4.6), 312 \text{ m}^{4} (\log \in 3.8), 375 \text{ m}^{4} (\log \in 3.8);$ IR $\gamma_{\text{max}}^{\text{nujol}} 1724 \text{ cm}^{-1}, 1678 \text{ cm}^{-1}, 1629-1634 \text{ cm}^{-1}, 1603 \text{ cm}^{-1}, 1245 \text{ cm}^{-1},$ $809 \text{ cm}^{-1}, \text{ and its ester (V, R=CH_3), m.p. 168.5°; UV } \sum_{\text{max}}^{\text{EtOH}} 240 \text{ m}^{4} (\log \in 4.5),$ $275 \text{ m}^{4} (\log \in 4.6), 316 \text{ m}^{4} (\log \in 3.8), 322 \text{ m}^{4} (\log \in 3.3), 326 \text{ m}^{4} (\log \in 3.8),$ $372 \text{ m}^{4} (\log \in 4.6), 316 \text{ m}^{4} (\log \in 3.8), 322 \text{ m}^{4} (\log \in 3.3), 326 \text{ m}^{4} (\log \in 3.8),$ $372 \text{ m}^{4} (\log \in 3.8); \text{ IR } \gamma_{\text{max}}^{\text{nujol}} 1748 \text{ cm}^{-1}, 1684 \text{ cm}^{-1}, 1629 \text{ cm}^{-1}, 1608 \text{ cm}^{-1},$ $1244 \text{ cm}^{-1}, 809 \text{ cm}^{-1}.$ Catalytic hydrogenation of V, R=H, in presence of 30% Pd-C catalyst furnished the saturated keto acid (I, R=O), m.p. 277-278° (evacuated sealed tube); UV $\chi_{\text{max}}^{\text{EtOH}}$ 220 m⁴ (log $\in 4.7$), 248 m⁴ (log $\in 4.5$), 279.5 m⁴ (log $\in 3.6$), 282 m⁴ (log $\in 3.6$), 284 m⁴ (log $\in 3.6$), 316 m⁴ (log $\in 3.8$), 355 m⁴ (log $\in 3.5$); IR $\gamma_{\text{max}}^{\text{nujol}}$ 2660 cm⁻¹, 1718 cm⁻¹, 1661 cm⁻¹, 1623 cm⁻¹, 1597 cm⁻¹, 1245 cm⁻¹. When the aforementioned hydrogenation was allowed to proceed following the uptake of one mole of hydrogen, the absorption

**

This compound has been reported by Harnik et al. (2).

slowed down and stopped after two more moles of hydrogen were absorbed to give I, R=2H, m.p. 281-282° (evacuated sealed tube); $UV \lambda_{max}^{EtOH}$ 231 m⁴ (log \in 4.8), 268 m⁴ (log \in 3.7), 278 m⁴ (log \in 3.7), 323 m⁴ (log \in 3.3), 338 m⁴ (log \in 3.4); IR) $\frac{nujol}{max}$ 2833 cm⁻¹, 1700 cm⁻¹, 1623 cm⁻¹, 1598 cm⁻¹, 1244 cm⁻¹. IR spectrum of I, R=2H, was identical with that of the compound (1) prepared earlier and whose configuration was proved by identity with an authentic material (1) prepared from <u>dl</u>-equilenin methyl ether (5).

Work is in progress to prepare naphthalene analogues of ll-keto steroids from the keto acid (I, R=0).

Acknowledgement: We are indebted to Professor William S. Johnson of Stanford University, U.S.A., for comparing the IR spectra of I, R=2H, and the authentic specimen. A few preliminary experiments were carried out by Dr. K. N. Rangammal.

REFERENCES

- D.K.Banerjee, H.N.Khastgir, J.Dutta, E.J.Jacob, W.S.Johnson, C.F.Allen, B.K.Bhattacharyya, J.C.Collins, Jr., A.L.McCloskey, W.T.Tsatsos, W.A.Vredenburgh and K.L.Williamson, <u>Tetrahedron Letters</u>, 76 (1961).
- 2. M.Harnik, Y.Lederman, H.Frumkis and N.Danieli, Tetrahedron, 23, 3183 (1967).
- 3. D.K.Banerjee and S.K.Das Gupta, <u>J.Am.Chem.Soc</u>., <u>74</u>, 1318 (1952); this publication has been overlooked by Harnik et al. (2).
- 4. G.Eglinton, J.C.Nevenzel, A.I.Scott and M.S.Newman, <u>J.Am.Chem.Soc.</u>, <u>78</u>, 2331 (1956).

^{5.} W.S. Johnson, J.W. Petersen and C.D. Gutsche, J.Am. Chem. Soc., 69, 2942 (1947).